How Hydrogeology Affects the Efficiency of Natural Attenuation

This page has been left blank intentionally for printing purposes.

How Hydrogeology Affects the Efficiency of Natural Attenuation

U.S. Geological Survey

How can we take all of these processes into account?

 To illustrate, let s do a mental experiment. OSWER recognizes that Natural Attenuation Processes include physical, biological, and chemical processes. These are:

- Physical (Dispersion, advection).
- Chemical transformations (sorption).
- Biological processes (reduction, oxidation).

Consider a contaminant spill that reaches the water table. The size of the contaminant plume that develops is controlled by:

- * Size of the spill.
- * velocity of G.W. flow (v).
- * Sorptive capacity of aquifer solids (s).
- * Biodegradation (k).

If v is large compared to s and k, the plume will be relatively large.

Conversely, if v is small relative to s and k, the plume will be relatively small.

<u>Postulate</u>: The efficiency of natural attenuation is inversely proportional to the distance of contaminant migration

 $E \sim 1/d$

<u>Therefore</u>: The efficiency of natural attenuation depends on:

- * Velocity of ground water
- Sorptive capacity of aquifer
- * Rates of biodegradation

This reasoning is useful because it can be quantified:

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} - v \frac{\partial C}{\partial x} - SC^{n} - kC$$
 (1)
$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} - v \frac{\partial C}{\partial x} - SC^{n} - kC$$
 (1)
$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} - v \frac{\partial C}{\partial x} - SC^{n} - kC$$
 (1)
$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2} - v \frac{\partial C}{\partial x} - SC^{n} - kC$$
 (1)

OSWER recognizes that Natural Attenuation Processes include physical, biological, and chemical processes. These are:

- * Physical (Dispersion, advection).
- * Chemical transformations (sorption).
- Biological processes (reduction, oxidation).

This is saying mathematically, what the OSWER Directive says in English.

$$\frac{\partial C}{\partial t} = D \frac{\partial^{2} C}{\partial x^{2}} - v \frac{\partial C}{\partial x} - SC^{n} - kC$$
dispersion (1)

dispersion

The key to assessing natural attenuation is to have:

- Hydrologic information (directions and rates of GW flow).
- Geochemical information (sorptive capacity of aquifer sediments).
- * Microbiologic information (rates of biodegradation).

How do you get this information?

- Hydrologic testing (hydraulic conductivity, water-level maps)
- Geochemical testing (redox conditions, sorptive capacity).
- Microbiologic testing (field and/or lab).

Application of the Electromagnetic Borehole Flowmeter

Steven C. Young, Hank E. Julian, Hubert S. Pearson, Fred J. Molz, and Gerald K. Boman

EPA/600/SR-98/058

Data from a Borehole Flowmeter Test

George Air Force Base, California

Hydraulic Conductivity - MW 27

Hydraulic Conductivity - MW 29

Hydraulic Conductivity - MW 31

George AFB

Monitoring Well	Average Hydraulic Conductivity (cm/sec)	Hydraulic Conductivity of Most Transmissive Interval (cm/sec)
MW-27	0.0074	0.11
MW-28	0.0046	0.022
MW-29	0.0028	0.062
MW-31	0.013	0.26
MW-45	0.0032	0.0056
MW-46	0.018	0.40

How do you get this information?

- Hydrologic testing (hydraulic conductivity, water-level maps)
- Geochemical testing (redox conditions, sorptive capacity).
- Microbiologic testing (field and/or lab).

How do you get this information?

- Hydrologic testing (hydraulic conductivity, water-level maps)
- * Geochemical testing (redox conditions, sorptive capacity).
- Microbiologic testing (field and/or lab).

Analytic or Digital Soulutions can then be used to assess Natural Attenuation:

If v *is large compared to* s *and* k, *the plume will be relatively large.*

Conversely, if v is small relative to s and k, the plume will be relatively small.

Example 1: Source Remains in Place:Plume becomes stable.

Example 2: Source Removed: Plume dissipates.

Even with sophisticated models, there is still uncertainty!

- Predictive models must be tested against historical data.
- Modeling must be verified with monitoring data.

